Straight Lines

Case Study Based Questions

Read the following passages and answer the questions that follow:

1. If A and B are two persons standing at the positions (2,-3) and (6, -5). If C is a third person who is standing between A and B such that it divides the line AB in the ratio 1:3.

Based on the above information answer the following questions.

(A) The distance between A and B is:

- (a) √5
- (b) 2√5
- (c) 3√5
- (d) 4√5

(B) The equation of AB is:

- (a) x+2y+4=0
- (b) x+2y-4=0
- (c) x-2y+4=0
- (d) none of these

(C) Coordinates of points C are:

(a)
$$\left(\frac{7}{2}, -3\right)$$
 (b) $\left(3, \frac{7}{2}\right)$
(c) $(3, 3)$ (d) $\left(3, -\frac{7}{2}\right)$

(D) Distance between A and C is:

(a)	√5	(b)	2√5
(c)	$\frac{\sqrt{5}}{2}$	(d)	$\sqrt{\frac{5}{2}}$

(E) Distance between C and B is:

(a) $\frac{3\sqrt{5}}{2}$ (b) $3\sqrt{5}$ (c) $\frac{2\sqrt{5}}{3}$ (d) None of these

Ans. (A) (b) 2√5

Explanation: Given positions of person A and B are as follows:

A(2,-3) and B(6,-5)

 $d = \sqrt{(6-2)^2 + (-5+3)^2}$ [using distance formula]

$$= \sqrt{(4)^2 + (-2)^2} = \sqrt{16 + 4}$$
$$= \sqrt{20} = 2\sqrt{5}$$

(B) (a)x+2y+4=0

Explanation: We have, A(2, -3) and B(6,-5)

Slope,
$$m = \frac{-5 - (-3)}{6 - 2}$$

= $\frac{-5 + 3}{4}$
= $\frac{-2}{4} = -\frac{1}{2}$

Taking point A(2, -3) = (x_1, y_1) and $m = -\frac{1}{2}$ Equation of line AB is

 $(y - (-3)) = -\frac{1}{2}(x-2)$ $\Rightarrow \qquad 2(y+3) = -(x-2)$ $\Rightarrow \qquad 2y+6 = -x+2$ $\Rightarrow \qquad x+2y+4 = 0$ (C) (d) $\left(3, -\frac{7}{2}\right)$

Explanation: Let point C divides AB in the ratio m₁, and m₂.

(D)

(c)
$$\frac{\sqrt{5}}{2}$$

Explanation: We have, A(2, -3) and

$$C\left(3, -\frac{7}{2}\right)$$

$$AC = \sqrt{(3-2)^2 + \left(-\frac{7}{2} + 3\right)^2}$$

$$= \sqrt{1^2 + \left(-\frac{1}{2}\right)^2}$$

$$= \sqrt{1 + \frac{1}{4}} = \frac{\sqrt{5}}{2}$$

(E)

(a)
$$\frac{3\sqrt{5}}{2}$$

Explanation: We have, $C\left(3, -\frac{7}{2}\right)$ and B(6, -5)

$$CB = \sqrt{(6-3)^2 + \left(-5 + \frac{7}{2}\right)^2}$$
$$= \sqrt{3^2 + \left(-\frac{3}{2}\right)^2}$$
$$= \sqrt{9 + \frac{9}{4}} = \frac{\sqrt{45}}{4} = \frac{3\sqrt{5}}{2}$$

Get More Learning Materials Here : 📕

2. The corner points of a square plot are (1, 2), (2, 3), (3, 1) (0,-4). Plot is located in an industrial area to build a well known company showroom.

Based on the above information, answer the following questions:

(A) Find the distance between (1, 2) and

(3, 1) and also find the slope of (1, 2) and (3, 1).

(B) Find the distance between (2, 3) and

(0, -4) and also find the slope of (2, 3) and (0, -4).

(C) Determine <B of the triangle with vertices

A(-2, 1), B(2, 3) and C(-2, -4).

Ans. (A) Here, A = (1, 2) B = (3, 1) AB = $\sqrt{(3-1)^2 + (1-2)^2}$

$$= \sqrt{4+1}$$
$$= \sqrt{5}$$

 $x_1 = 2, x_2 = 0$

Here,

$$y_{1} = 3, y_{2} = -4$$

$$m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}}$$

$$= \frac{-4 - 3}{0 - 2}$$

$$= \frac{-7}{-2}$$

$$= \frac{7}{2}$$

Get More Learning Materials Here :

🕀 www.studentbro.in

Here,

A = (2, 3)

B = (0, -4)

 $AB = \sqrt{(0-2)^2 + (-4-3)^2}$

So,

$$= \sqrt{4+49}$$
$$= \sqrt{53}$$

 $x_1 = 1, x_2 = 3$

Here,

 $y_1 = 2, y_2 = 1$

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$= \frac{1 - 2}{3 - 1}$$
$$= \frac{-1}{2}$$
(C)

Slope of line, AB = $\frac{3-1}{2+2} = \frac{2}{4} = \frac{1}{2} = m_1$ (say), Slope of line, BC = $\frac{-4-3}{-2-2} = \frac{7}{4} = m_2$ \therefore tan B = $\left| \frac{m_2 - m_1}{1 + m_1 m_2} \right|$

$$= \frac{\left|\frac{7}{4} - \frac{1}{2}\right|}{\left|1 + \frac{1}{2} \cdot \frac{7}{4}\right|}$$
$$\angle B = \tan^{-1}\left(\frac{2}{3}\right)$$

3. Three girls Rani, Mansi, Sneha are talking to each other while maintaining a social distance due to covid-19. They are standing on vertices of a triangle, whose coordinates are given.

Get More Learning Materials Here :

Based on the above information answer the following questions.

(A) The equation of lines formed by Rani and Mansi is:

(a) 3x - y = 4

- (b) 3x + y = 4
- (c) x-3y=4
- (d) x + 3y = 4

(B) Slope of equation of line formed by Rani and Sneha is:

(a)	$\frac{2}{3}$	(b)	<u>-3</u> 2
(c)	<u>-2</u> 3	(d)	$\frac{1}{3}$

(C) The equation of median of lines through Rani is:

- (a) 5x + 4y = 2
- (b) 5x-4y = 2
- (c) 4x-5y = 1
- (D) The equation of

(d) none of these altitude through Mansi is:

- (a) 3x-2y=1
- (b) 2x + 3y = 5
- (c) x+2y=3
- (d) none of these

(E) The equation of line passing through the Rani and parallel to line formed by Mansi and Sneha is:

- (a) x-2y= 4
- (b) x + 2y = 6
- (c) x-2y=6
- (d) 2x + y = 4

Ans. Let the point on Rani, Mansi and Sneha stand on a vertices of triangles be A, B, C. :- A(2,-2), B(1, 1), C(-1, 0)

(A) (b) 3x+y=4 Explanation: The equation of line AB is

$$y - 1 = \frac{-2 - 1}{2 - 1}(x - 1)$$

$$\left[\because y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1) \right]$$

$$\Rightarrow \qquad y - 1 = -3x + 3$$

$$\Rightarrow \qquad 3x + y = 4$$
(B)
(c) $-\frac{2}{3}$

Explanation: Slope of equation of line AC is

$$m = \frac{0+2}{-1-2} = \frac{2}{-3} = -\frac{2}{3}$$

(C) (a) 5x + 4y = 2

Explanation: Let D be the mid-point of BC.

Coordinates of D are $\left(\frac{1-1}{2}, \frac{0+1}{2}\right) = \left(0, \frac{1}{2}\right)$ \therefore Equation of AD is $y + 2 = \frac{\frac{1}{2} + 2}{0-2}(x-2)$ $\Rightarrow \qquad y + 2 = \frac{-5}{4}(x-2)$ $\Rightarrow \qquad 4y + 8 = -5x + 10$ $\Rightarrow \qquad 5x + 4y = 2$ **(D)** (a) 3x-2y=1 **Explanation:** Slope of AC = $\frac{-2}{3}$

...

Slope of BE = $\frac{3}{2}$ [: BE \perp AC]

Equation of altitude through B is

$$y - 1 = \frac{3}{2}(x - 1)$$
$$3x - 2y = 1$$

 \Rightarrow

(E) (c) x-2y= 6

Explanation: Slope of line BC = $\frac{0-1}{-1-1} = \frac{1}{2}$

Equation of line passing through A and parallel to BC is

$$y + 2 = \frac{1}{2}(x - 2)$$

⇒ $2y + 4 = x - 2$

⇒ $x - 2y = 6$

4. A triangular park has two of its vertices as B(-4, 1) and C(2, 11). The third vertex A is a point dividing the line joining the points (3, 1) and (6, 4) in the ratio 2:1.

(A) Find the coordinates of third vertex A.

(B) Find the equation of line passing through B and C.

(C) Find the equations of the sides of a triangle whose vertices are A(-1, 8), B(4,-2) and C(-5,-3).

Ans. (A)

$$B = 2$$

$$A = \left(\frac{2 \times 6 + 1 \times 3}{2 + 1}, \frac{2 \times 4 + 1 \times 1}{2 + 1}\right)$$
i. e., (5, 3)

Get More Learning Materials Here :

(B) Equation of line through B(-4, 1)and C(2, 11) is

$$y-1 = \frac{11-1}{2+4}(x+4)$$

$$\Rightarrow \qquad y-1 = \frac{5}{3}(x+4)$$

$$\Rightarrow \qquad 3y-3 = 5x+20$$

$$\Rightarrow \qquad 5x-3y+23 = 0$$

(C) Here, we use two points form to find the equation of sides.

